
Agate Documentation

OBiBa

Jan 22, 2024

CONTENTS

1 Introduction 3

2 Installation 7

3 Configuration 13

4 Public Pages Configuration 19

5 Web Introduction 25

6 Users Management 27

7 Groups Management 29

8 Applications Management 31

9 Tickets Management 33

10 Realms Management 35

11 Administration 37

12 Python Introduction 39

13 User Commands 41

14 Group Commands 45

15 Application Commands 49

16 Other Commands 53

17 OAuth2 Introduction 55

18 Authorization Code Grant Flow 59

19 Resource Owner Password Credentials Grant Flow 65

20 OpenID Connect Flow 69

21 Partners and Funders 73

22 Support 75

i

ii

Agate Documentation

Targeted at individual studies and study consortia, OBiBa software stack (Opal, Mica etc.) provides a software solution
for epidemiological data management, analysis and publication. While Opal, the core data warehouse application,
provides all the necessary tools to import, transform and describe data, Mica provides everything needed to build
personalized web data portals and publish content of research activities of both studies and consortia.

Agate is the OBiBa’s central authentication server which intends to be easy to install and to use. Agate centralizes also
some user related services such as profile management, and a notification system using emails.

CONTENTS 1

http://obiba.org/
http://www.obiba.org/pages/products/opal/
http://www.obiba.org/pages/products/mica/
http://obiba.org/

Agate Documentation

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Users, Groups and Applications

The following diagram describes the domain handled by Agate. Each entity of this domain can be edited individually
in the Agate Web Application administration interface.

1.1.1 User

A user is described by some properties. Among these properties, the user name and email must be unique in the system:
when signing in, a user can provide its name or email. The authentication is done by providing a password, which is
stored in the Agate database in a digested form.

A user can belong to some groups.

A user can have access to some applications. If no application is provided, the user can only access to Agate. Otherwise,
listed applications will have the user authenticated by Agate.

3

Agate Documentation

1.1.2 Group

A group is uniquely identified by its name. A group can be associated to one or applications.

Members of a group can have access to the applications associated to it.

1.1.3 Application

An application has a name and a key. Each time an external application wants to use the services of Agate, it must
provide in the request its name and key. This allows Agate to check the validity of the actions to be performed and the
information to be returned.

Its redirect URI is used when authenticating through the OpenID Connect Flow to validate the source application.

1.2 Authentication Flow

When a user tries to sign-in an application X, this application delegates the user authentication to Agate. If successful,
a ticket is created in Agate (to track user activity) and user session local to the application X is created. This local user
session allows the application to not query Agate each time user authorization check is requested.

1.3 Architecture, Servers and Clients

The architecture of Mica is split in several servers:

• Mica server: holds the domain and controls what is to be published, provides the web portal front-end and uses
Agate as its user directory.

• Opal server: holds the data with their dictionary and provide statistics services,

• Agate server: user directory for data access requests management.

4 Chapter 1. Introduction

Agate Documentation

Mica, Opal and Agate are applications developed by OBiba. Each of these OBiBa servers expose web services to allow
easy interconnection. The Mica web portal is the final application which leverages each server specific domain and
functionalities in one.

The following diagram shows how these servers are linked together:

1.3.1 Agate Server

Agate application is used for:

• having a user directory shared between OBiBa’s applications,

• having centralized services such as profile management and email notifications.

1.3. Architecture, Servers and Clients 5

Agate Documentation

1.3.2 Mica Server

Mica application is used for:

• defining and publishing network, study and dataset catalogues,

• search for variables.

Installation and configuration guides can be found in the section Mica Server Administrator Guide.

Editors and reviewers of the Mica web portal content can access to the web interface of this server as described in the
Mica Web Application User Guide.

Mica server is a client of Opal and Agate servers.

1.3.3 Opal Server

Opal application is used for:

• defining data dictionaries (variables),

• storing data,

• providing data summary statistics.

Opal offers well established security controls, allowing to NOT expose individual-level data. Note also that the Opal
server is only accessed by the Mica server, reducing the risk of data compromisation from a malicious end user.

Installation and configuration guides can be found in the Opal Server Administrator Guide.

Mica expects at least one Opal server when some datasets are defined. Additional Opal servers can also be identified
to access to distributed datasets.

6 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

Agate is a stand-alone Java server application that requires MongoDB as database engine.

2.1 Requirements

2.1.1 Server Hardware Requirements

Component Requirement
CPU Recent server-grade or high-end consumer-grade processor
Disk space 8GB or more.
Memory (RAM) Minimum: 4GB, Recommended: >4GB

2.1.2 Server Software Requirements

Software Suggested version Download link Usage
Java 8 OpenJDK 8 downloads Java runtime environment
MongoDB <= 6.0.x MongoDB Community downloads Database engine

While Java is required by Agate server application, MongoDB can be installed on another server.

2.2 Install

Agate is distributed as a Debian/RPM package and as a zip file. The resulting installation has default configuration that
makes Agate ready to be used (as soon as a MongoDB server is available). Once installation is done, see Configuration
instructions.

7

https://www.java.com
https://www.mongodb.com/
http://openjdk.java.net/projects/jdk8/
https://www.mongodb.com/docs/v4.2/administration/install-community/

Agate Documentation

2.2.1 Debian Package Installation

Agate is available as a Debian package from OBiBa Debian repository. To proceed installation, do as follows:

• Install Debian package. Follow the instructions in the repository main page for installing Agate.

• Manage Agate Service: after package installation, Agate server is running: see how to manage the Service.

2.2.2 RPM Package Installation

Agate is available as a RPM package from OBiBa RPM repository. To proceed installation, do as follows:

• Install RPM package. Follow the instructions in the RPM repository main page for installing Agate.

• Manage Agate Service: after package installation, Agate is running: see how to manage the Service.

2.2.3 Zip Distribution Installation

Agate is also available as a Zip file. To install Agate zip distribution, proceed as follows:

• Download Agate distribution

• Unzip the Agate distribution. Note that the zip file contains a root directory named agate-x.y.z-dist (where x, y
and z are the major, minor and micro releases, respectively). You can copy it wherever you want. You can also
rename it.

• Create an AGATE_HOME environment variable

• Separate Agate home from Agate distribution directories (recommended). This will facilitate subsequent up-
grades.

Set-up example for Linux:

mkdir agate-home
cp -r agate-x-dist/conf agate-home
export AGATE_HOME=`pwd`/agate-home
./agate-x-dist/bin/agate

Launch Agate. This step will create/update the database schema for Agate and will start Agate: see Regular Command.

For the administrator accounts, the credentials are “administrator” as username and “password” as password. See User
Directories Configuration to change it.

2.2.4 Docker Image Installation

OBiBa is an early adopter of the Docker technology, providing its own images from the Docker Hub repository.

A typical docker-compose file (including a MongoDB database) would be:

version: '3'
services:

agate:
image: obiba/agate
ports:

- "8881:8081"
links:

(continues on next page)

8 Chapter 2. Installation

http://www.obiba.org/pages/pkg/
http://www.obiba.org/pages/rpm/
https://github.com/obiba/agate/releases
https://www.docker.com/
https://hub.docker.com/orgs/obiba/repositories
https://docs.docker.com/compose/

Agate Documentation

(continued from previous page)

- mongo
environment:

- AGATE_ADMINISTRATOR_PASSWORD=password
- MONGO_HOST=mongo
- MONGO_PORT=27017
- RECAPTCHA_SITE_KEY=6Lfo7gYTAAAAAOyl8_MHuH-AVBzRDtpIuJrjL3Pb
- RECAPTCHA_SECRET_KEY=6Lfo7gYTAAAAADym-vSDvPBeBCXaxIprA0QXLk_b

volumes:
- /tmp/agate:/srv

mongo:
image: mongo

Then environment variables that are exposed by this image are:

Environment Variable Description
JAVA_OPTS
AGATE_ADMINISTRATOR_PASSWORD Agate administrator password, required and set at first start.
MONGO_HOST MongoDB server host (optional).
MONGO_PORT MongoDB server port, default is 27017.
MONGO_DB MongoDB database name, default is agate.
RECAPTCHA_SITE_KEY reCAPTCHA v2 site key
RECAPTCHA_SECRET_KEY reCAPTCHA v2 secret key

2.3 Upgrade

The upgrade procedures are handled by the application itself.

2.3.1 Debian Package Upgrade

If you installed Agate via the Debian package, you may update it using the command:

apt-get install agate

2.3.2 RPM Package Upgrade

If you installed Agate via the RPM package, you may update it using the command:

yum install agate

2.3. Upgrade 9

https://developers.google.com/recaptcha
https://developers.google.com/recaptcha

Agate Documentation

2.3.3 Zip Distribution Upgrade

Follow the Installation of Agate Zip distribution above but make sure you don’t overwrite your agate-home directory.

2.4 Execution

2.4.1 Server launch

Service

When Agate is installed through a Debian/RPM package, Agate server can be managed as a service.

Options for the Java Virtual Machine can be modified if Agate service needs more memory. To do this, modify the
value of the environment variable JAVA_ARGS in the file /etc/default/agate.

Main actions on Agate service are: start, stop, status, restart. For more information about available actions on
Agate service, type:

service agate help

The Agate service log files are located in /var/log/agate directory.

Manually

The Agate server can be launched from the command line. The environment variable AGATE_HOME needs to be setup
before launching Agate manually.

Environment vari-
able

Re-
quired

Description

AGATE_HOME yes Path to the Agate “home” directory.
JAVA_OPTS no Options for the Java Virtual Machine. For example: -Xmx4096m -

XX:MaxPermSize=256m

To change the defaults update: bin/agate or bin/agate.bat

Make sure Command Environment is setup and execute the command line (bin directory is in your execution PATH)):

agate

Executing this command upgrades the Agate server and then launches it.

The Agate server log files are located in AGATE_HOME/logs directory. If the logs directory does not exist, it will be
created by Agate.

2.4.2 Usage

To access Agate with a web browser the following urls may be used (port numbers may be different depending on HTTP
Server Configuration):

• http://localhost:8081 will provide a connection without encryption,

• https://localhost:8444 will provide a connection secured with ssl.

10 Chapter 2. Installation

http://localhost:8081
https://localhost:8444

Agate Documentation

2.4.3 Troubleshooting

If you encounter an issue during the installation and you can’t resolve it, please report it in our Agate Issue Tracker.

Agate logs can be found in /var/log/agate. If the installation fails, always refer to this log when reporting an error.

2.4. Execution 11

https://github.com/obiba/agate/issues

Agate Documentation

12 Chapter 2. Installation

CHAPTER

THREE

CONFIGURATION

The file AGATE_HOME/conf/application.yml is to be edited to match your server needs. This file is written in
YAML format allowing to specify a hierarchy within the configuration keys. The YAML format uses indentations to
express the different levels of this hierarchy. The file is already pre-filled with default values (to be modified to match
your configuration), just be aware that you should not modify the indentations. In the following documentation, the
configuration keys will be presented using the dot-notation (levels are separated by dots) for readability.

3.1 HTTP Server Configuration

Agate server is a web application and as such, you need to specify on which ports the web server should listen to
incoming requests.

Property Description
server.port HTTP port number. Generally speaking this port should not be exposed to the web. Use the

https port instead.
server.address Web server host name.
server.
context-path

The URL’s context path, starting with a /. For instance when setting /auth, the base URL will
be https://example.org/auth.

https.port HTTPS port number.

3.2 MongoDB Server Configuration

Agate server will store its data (system configuration, networks, studies, datasets, etc.) in a MongoDB database. You
must specify how to connect to this database.

Property Description
spring.data.mongodb.uri MongoDB URI. Read Standard Connection String Format to learn more.

By default MongoDB does not require any user name, it is highly recommended to configure the database with a user.
This can be done by enabling the Client Access Control procedure.

Follow these steps to enable the Client Access Control on your server:

• create a user with the proper roles on the target databases

• restart the MongoDB service with Client Access Control enabled

13

https://docs.mongodb.com/manual/reference/connection-string/

Agate Documentation

Note: Once the MongoDB service runs with Client Access Control enabled, all database connections require authen-
tication.

MongoDB User Creation Example

The example below creates the agateadmin user for agate database:

use admin

db.createUser({
user: "agateadmin", pwd: "agateadmin",
roles: [

{ "role" : "readWrite", "db" : "agate" },
{ "role" : "dbAdmin", "db" : "agate" },
{ "role" : "readAnyDatabase", "db": "admin" }

]
});

Here is the required configuration snippet in /etc/agate/application.yml for the above user:

spring:
data:
mongodb:
uri: mongodb://agateadmin:agateadmin@localhost:27017/agate?authSource=admin

Note: Agate requires either clusterMonitor or readAnyDatabase role on the admin database for validation opera-
tions. The first role is useful for a cluster setup and the latter if your MongoDB is on a single server.

3.3 reCAPTCHA Configuration

Agate uses reCAPTCHA service to protect the sign-up page from spam and abuse. See reCAPTCHA Guide to create
a key pair. Note that only reCAPTCHA version 2 is supported.

Property Description
recaptcha.
verifyUrl

External service that verifies the reCAPTCHA key pair. Default is https://www.google.
com/recaptcha/api/siteverify.

recaptcha.
secret

reCAPTCHA secret key, used to authorize the communication between Agate and the re-
CAPTCHA server.

client.
reCaptchaKey

reCAPTCHA site key, used to invoke reCAPTCHA service on the application’s site.

14 Chapter 3. Configuration

https://developers.google.com/recaptcha
https://developers.google.com/recaptcha/intro

Agate Documentation

3.4 Cross Site Resource Forgery (CSRF)

CSRF attacks can be mitigated by a built-in interceptor. Default behavior allows connections (http or https) from
localhost and 127.0.0.1. Requests from pages served by Opal should be allowed as well (https only), unless
network settings or proxies modify or do not report the referer URL.

Property Description
csrf.
allowed

Comma separated list of client host:port explicitly allowed to connect to Opal server. Use * as a
wildcard. Default is empty.

3.5 User Directories

The security framework that is used by Agate for authentication, authorization etc. is Shiro. Configuring Shiro for
Agate is done via the file AGATE_HOME/conf/shiro.ini. See also Shiro ini file documentation.

Note: Default configuration is a static user ‘administrator’ with password ‘password’ (or the one provided while
installing Agate Debian/RPM package).

By default Agate server has several built-in user directories (in the world of Shiro, a user directory is called a realm):

• a file-based user directory (shiro.ini file),

• the internal user directory persisted in the MongoDB database.

Although it is possible to register some additional user directories, this practice is currently not recommended. It is also
not recommended to use this file-based user directory for adding users. It is mainly dedicated to define a default system
super-user. For a better security, user passwords are encrypted with a one way hash such as sha256. The example
shiro.ini file below demonstrates how encryption is configured.

=======================
Shiro INI configuration
=======================

[main]
Objects and their properties are defined here,
Such as the securityManager, Realms and anything else needed to build the␣
→˓SecurityManager

[users]
The 'users' section is for simple deployments
when you only need a small number of statically-defined set of User accounts.
#
Password here must be encrypted!
Use shiro-hasher tools to encrypt your passwords:
DEBIAN:
cd /usr/share/agate/tools && ./shiro-hasher -p
UNIX:
cd <AGATE_DIST_HOME>/tools && ./shiro-hasher -p
WINDOWS:
cd <AGATE_DIST_HOME>/tools && shiro-hasher.bat -p

(continues on next page)

3.4. Cross Site Resource Forgery (CSRF) 15

https://owasp.org/www-community/attacks/csrf
http://shiro.apache.org/
http://cwiki.apache.org/confluence/display/SHIRO/Configuration#Configuration-INISections

Agate Documentation

(continued from previous page)

#
Format is:
username=password[,role]*
administrator = $shiro1$SHA-256$500000$dxucP0IgyO99rdL0Ltj1Qg==$qssS60kTC7TqE61/JFrX/
→˓OEk0jsZbYXjiGhR7/t+XNY=,agate-administrator

[roles]
The 'roles' section is for simple deployments
when you only need a small number of statically-defined roles.
Format is:
role=permission[,permission]*
agate-administrator = *

Passwords must be encrypted using shiro-hasher tools (included in Agate tools directory):

cd /usr/share/agate/tools
./shiro-hasher -p

3.6 Notification Emails

Agate offers a notification emails service to the registered applications. Based on email templates, an application can
request Agate to send emails to one or more of its users. Agate is using email templates for sending its notifications
(email confirmation, reset password etc.).

Some templates are provided by default: see default templates directory. To override these default templates, the new
templates are to be defined in the AGATE_HOME/conf/templates/notifications/ directory, using the same file names
and directory structure.

The email templates specific to an application are located in the directory <templates
folder>/notifications/<application name>.

The template engine used for building the email messages is FreeMarker. The default templates are in HTML format,
but they could also be written in plain text.

3.7 Reverse Proxy Configuration

Agate server can be accessed through a reverse proxy server.

Apache

Example of Apache directives that:

• redirects HTTP connection on port 80 to HTTPS connection on port 443,

• specifies acceptable protocols and cipher suites,

• refines organization’s specific certificate and private key.

<VirtualHost *:80>
ServerName agate.your-organization.org
ProxyRequests Off
ProxyPreserveHost On

(continues on next page)

16 Chapter 3. Configuration

https://github.com/obiba/agate/tree/master/agate-webapp/src/main/resources/_templates/notifications
https://freemarker.apache.org/

Agate Documentation

(continued from previous page)

<Proxy *>
Order deny,allow
Allow from all

</Proxy>
RewriteEngine on
ReWriteCond %{SERVER_PORT} !^443$
RewriteRule ^/(.*) https://agate.your-organization.org:443/$1 [NC,R,L]

</VirtualHost>
<VirtualHost *:443>

ServerName agate.your-organization.org
SSLProxyEngine on
SSLEngine on
SSLProtocol All -SSLv2 -SSLv3
SSLHonorCipherOrder on
Prefer PFS, allow TLS, avoid SSL, for IE8 on XP still allow 3DES
SSLCipherSuite "EECDH+ECDSA+AESGCM EECDH+aRSA+AESGCM EECDH+ECDSA+SHA384␣

→˓EECDH+ECDSA+SHA256 EECDH+aRSA+SHA384 EECDH+aRSA+SHA256 EECDH+AESG CM EECDH EDH+AESGCM␣
→˓EDH+aRSA HIGH !MEDIUM !LOW !aNULL !eNULL !LOW !RC4 !MD5 !EXP !PSK !SRP !DSS"

Prevent CRIME/BREACH compression attacks
SSLCompression Off
SSLCertificateFile /etc/apache2/ssl/cert/your-organization.org.crt
SSLCertificateKeyFile /etc/apache2/ssl/private/your-organization.org.key
ProxyRequests Off
ProxyPreserveHost On
ProxyPass / https://localhost:8444/
ProxyPassReverse / https://localhost:8444/

</VirtualHost>

For performance, you can also activate Apache’s compression module (mod_deflate) with the following settings (note
the json content type setting) in file /etc/apache2/mods-available/deflate.conf :

<IfModule mod_deflate.c>
<IfModule mod_filter.c>

these are known to be safe with MSIE 6
AddOutputFilterByType DEFLATE text/html text/plain text/xml
everything else may cause problems with MSIE 6
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/x-javascript application/javascript␣

→˓application/ecmascript
AddOutputFilterByType DEFLATE application/rss+xml
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE application/json

</IfModule>
</IfModule>

Recommended security headers are (to be added to the apache2.conf file, requires headers module):

Security Headers, see https://securityheaders.com/
Header set Strict-Transport-Security "max-age=63072000"
Header set X-Frame-Options DENY
Header set X-XSS-Protection 1;mode=block
Header set X-Content-Type-Options nosniff

(continues on next page)

3.7. Reverse Proxy Configuration 17

Agate Documentation

(continued from previous page)

Header set Content-Security-Policy "frame-ancestors 'none'"
Header set Referrer-Policy "same-origin"
Header set Permissions-Policy "fullscreen=(self)"
Header onsuccess edit Set-Cookie ^(.+)$ "$1;HttpOnly;Secure;SameSite=Strict"

18 Chapter 3. Configuration

CHAPTER

FOUR

PUBLIC PAGES CONFIGURATION

Starting from Agate 2.0, the administration user interface is distinct from the public pages, i.e. pages that are to be
accessed by regular users. These pages are based on templates that can be customized, extended or overridden. The
template engine that is used is FreeMarker which has a clean and powerful syntax.

4.1 Page Templates

4.1.1 Main Pages

The main public pages are:

Page Description
index The home page
profile The user profile page for updating personal information and password
signin The login page
signup The user registration page
signup-with The user registration page, with form pre-filled with personal information extracted from a

OpenID Connect server
confirm The page to confirm user’s registration (and validate email) and set the user password
forgot-passwordThe page to ask for password reset
reset-password The page to update the password after a reset was triggered
just-registeredThe welcome page after a user has registered

The templates structure is organized in a way that it should not be necessary to override these pages definitions. Instead
of that, it is recommended to change/extend the theme/style as described in this guide.

Some template variables (date formats, branding, favicon etc.) are also defined in libs/settings.ftl and can be altered in
the file models/settings.ftl that would be added in your configuration folder as follows:

AGATE_HOME
conf

templates
models

settings.ftl

General settings

19

https://freemarker.apache.org/
https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/
https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/libs/settings.ftl

Agate Documentation

Vari-
able

Description

datetimeFormatThe format in which the date-time values should be rendered.
date The format in which the date values should be rendered.
faviconPathThe location of the favicon, to be modified to match your own.
brandImageSrcThe location of your organization’s logo.
brandImageClassCSS classes to apply to the logo.
brandTextEnabledLogical to show/hide a text aside of the logo.
brandTextClassCSS classes to apply to the text aside of the logo.
adminLTEPathThe location of the AdminLTE theme if this one has been modified (see the Theme section in this

documentation).

Home page settings

Vari-
able

Description

portalLinkThe link applied to the logo. Default is the data portal (as specified in the Administration > General
section), but it could also be the organization’s main portal.

User Profile page settings

Vari-
able

Description

showProfileRoleLogical to show/hide the role to which the user belongs.
showProfileGroupsLogical to show/hide the groups to which the user belongs.
showProfileApplicationsLogical to show/hide the applications in which the user can sign.

4.1.2 Adding Pages

It is possible to add new pages, for providing additional information or guidance to the regular user. This can be done
as follows:

• Install a new page templates

• Add a new menu entry

1. Install custom page template

The new template page is to be declared in the configuration folder:

AGATE_HOME
conf

templates
custom.ftl

You can check at the provided templates to make your template fit in the site theme and structure. The profile page
template could be a good starting point.

FreeMarker will look at its context to resolve variable values. For a custom page the objects available in the context
are:

20 Chapter 4. Public Pages Configuration

https://adminlte.io/
https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/profile.ftl
https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/profile.ftl
https://freemarker.apache.org/

Agate Documentation

Object Description
config The Agate configuration
user The user object (if user is logged in)
query The URL query parameters as a map of strings

This custom template page can load any CSS or JS file that might be useful. These files can be served directly by
adding them as follows (there are no restrictions regarding the naming and the structure of these files, as soon as they
are located in the static folder):

AGATE_HOME
conf

static
custom.css
custom.js

The URL of this custom page will be for instance: https://agate.example.org/page/custom.

2. Custom menu entry

To link to a custom page (or an external page), some templates can be defined to extend the default menus: left menu
can be extended on its right and right menu can be extended on its left. The corresponding templates are:

AGATE_HOME
conf

templates
models

navbar-menus-left.ftl
navbar-menus-right.ftl

Check at the default left and right menus implementation as a reference.

4.2 Theme and Style

4.2.1 Theme

The default theme is the one provided by the excellent AdminLTE framework. It is based on Bootstrap and JQuery. In
order to overwrite this default theme, the procedure is the following:

• Build a custom AdminLTE distribution

• Install this custom distribution

• Change the template settings so that pages refer to this custom distribution instead of the default one

1. Build custom AdminLTE

This requires some knowledge in CSS development in a Node.js environment:

• Download AdminLTE source (source code or a released version)

• Reconfigure Sass variables

• Rebuild AdminLTE (see instructions in the README file, contributions section)

2. Install custom AdminLTE

4.2. Theme and Style 21

https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/libs/navbar-menus-left.ftl
https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/libs/navbar-menus-right.ftl
https://adminlte.io/
https://getbootstrap.com/
https://jquery.com/
https://github.com/ColorlibHQ/AdminLTE
https://sass-lang.com/

Agate Documentation

The objective is to have the web server to serve this new set of stylesheet and javascript files. This is achieved by
creating the folder AGATE_HOME/conf/static and copying the AdminLTE custom distribution in that folder. Not all
the AdminLTE are needed, only the dist and plugins ones. The folder tree will look like:

AGATE_HOME
conf

static
admin-lte

dist
plugins

3. Template settings

Now that the custom AdminLTE distribution is installed in the web server environment, this new location must be
declared in the page templates. The default templates settings are defined in the libs/settings.ftl template file. See the
adminLTEPath variable. This variable can be altered by defining a custom settings.ftl file as follows:

AGATE_HOME
conf

templates
models

settings.ftl

In this custom settings.ftl file the new AdminLTE distribution location will be declared:

<#assign adminLTEPath = "/admin-lte"/>

4.2.2 Style

As an alternative to theming, it is also possible to alter the style of the pages by loading your own stylesheet and tweaking
the pages’ layout using javascript (and JQuery). The procedure is the following:

• Install custom CSS and/or JS files

• Custom the templates to include these new CSS and/or JS assets

1. Install custom CSS/JS

The objective is to have the web server to serve this new set of stylesheet and javascript files. This is achieved by
creating the folder AGATE_HOME/conf/static and copying any CSS/JS files that will be included in the template
pages. The folder tree will look like:

AGATE_HOME
conf

static
custom.css
custom.js

2. Custom templates

For the CSS files, the models/head.ftl template allows to extend the HTML pages “head” tag content with custom
content. For the JS files, the models/scripts.ftl template allows to extend the HTML pages “script” tags. The folder
tree will look like:

AGATE_HOME
conf

(continues on next page)

22 Chapter 4. Public Pages Configuration

https://github.com/obiba/agate/blob/master/agate-webapp/src/main/resources/_templates/libs/settings.ftl
https://jquery.com/

Agate Documentation

(continued from previous page)

templates
models

head.ftl
scripts.ftl

Where the head.ftl template will be:

<link rel="stylesheet" href="/custom.css"/>

And the scripts.ftl template will be:

<script src="/custom.js"/>

4.3 Translations

The translations are performed in the following order, for a given locale:

1. check for the message key in the messages_<locale>.properties (at different locations)

2. check for the message key in the <locale> JSON object as defined the Administration > Translations section
of the administration interface

For the messages_* properties, the translations can be added/overridden as follows:

AGATE_HOME
conf

translations
notifications

messages_fr.properties
messages_en.properties

messages_fr.properties
messages_en.properties

Note that the notification emails translations are located at a different place than the ones for the public pages. Note also
that you can declare only the messages_* properties files that are relevant (language and public pages vs. notification
emails) and the content of these files can contain only the translation keys that you want to override.

4.3. Translations 23

Agate Documentation

24 Chapter 4. Public Pages Configuration

CHAPTER

FIVE

WEB INTRODUCTION

The Agate Web Application is the administration web interface of the Agate server. It is NOT the end-user web portal
and therefore firewall policies can (or should) be applied to restrict access to administrators or content editors.

See the Users, Groups and Applications presentation page for a detailed description of the type of documents that can
be edited through this web interface.

The following manuals are available:

• Users Management: add, edit users

• Groups Management: add, edit groups

• Applications Management: add, edit applications

• Tickets Management: track user sessions

• Administration: configure server settings

5.1 Requirements

This web interface is a javascript application requiring a modern web browser. There is no requirement regarding the
operating system.

25

Agate Documentation

26 Chapter 5. Web Introduction

CHAPTER

SIX

USERS MANAGEMENT

The user pages are: the list of users page, the list of users requesting to join page, and user view and edit pages. See
also User domain documentation.

6.1 Permissions

Users with the agate-administrator role have access to these pages.

6.2 Operations

6.2.1 Add a user

Agate administrators can create users. The “General information” section contains system defined properties as well
as configured attributes defined by the administrator. The “Access” section contains information related to the Role in
agate, Groups and Applications for the user. Some user specific attributes can be defined too.

6.2.2 Edit a user

All the information for a user but his user name can be edited.

6.2.3 Delete a user

A user can be deleted.

6.2.4 Reset a user’s password

Click the reset password button to send the user, an email with details on how to reset his password.

27

Agate Documentation

6.2.5 Approve/Reject a user request

User requests can be approved or rejected. When a user sends a request, it is created with a status pending. If the
request is rejected the user is removed, otherwise his status becomes approved.

28 Chapter 6. Users Management

CHAPTER

SEVEN

GROUPS MANAGEMENT

Users can grouped in groups associated with a list of applications. Members of a group get access to the applications
associated with it. See also Group domain documentation.

The group pages are: the list of groups page and group view and edit pages.

7.1 Permissions

Users with agate-administrator role can access these pages.

7.2 Operations

7.2.1 Add group

Creates a group defined by a unique name.

7.2.2 Edit group

The description and the list of associated applications can be edited.

7.2.3 Delete group

A group can be deleted if there are no users associated with it.

29

Agate Documentation

30 Chapter 7. Groups Management

CHAPTER

EIGHT

APPLICATIONS MANAGEMENT

An application is an external system that can use Agate as a central authentication system. Once an application is
registered in agate, it can use its credentials (name and key) to connect with agate. See also Application domain
documentation.

When Agate delegates the authentication to an external Open ID Connect Realm or when using OAuth2 service (see
OAuth2 Introduction), the redirect URI must be set so that Agate performs the redirect to a known application after
successful authentication. Wildcard * can be used in this configured redirect URI.

The application pages are: the list of applications page and application view and edit pages.

8.1 Permissions

Users with agate-administrator role can access these pages.

8.2 Operations

8.2.1 Add an application

Creates a new application that can access agate with the defined name and key. The application name has to be unique
in agate.

8.2.2 Edit an application

Edits an application’s properties. The name can not be changed.

8.2.3 Delete an application

An application can be deleted only if there are no groups or users associated with it.

31

Agate Documentation

32 Chapter 8. Applications Management

CHAPTER

NINE

TICKETS MANAGEMENT

Tickets are used to track the requests done on a specific user by the applications. A ticket is identified by a token which
is an obscure identifier used by the applications internally.

9.1 Permissions

Users with agate-administrator role have access to this page.

9.2 Operations

9.2.1 Delete ticket

A ticket can be deleted to clear the history of requests done on a specific user by the applications.

33

Agate Documentation

34 Chapter 9. Tickets Management

CHAPTER

TEN

REALMS MANAGEMENT

10.1 Authentication Delegation

Agate is able to delegate authentication to alternate identity provider systems. Note that even if the authentication
happens in this third party application, the user still need to have a profile declared in Agate. The sign-up process
extracts the user information, if some are available, to assist with the creation of this profile, but afterwards only the
authentication service is used.

10.2 Realm Types

10.2.1 Open ID Connect Realm

A realm that uses the OpenID Connect (OIDC) protocol to authenticate users. OpenID Connect Flow explains the
typical authentication flow when using this type of realm.

To register Agate as a client of the OIDC provider it will be necessary to provide its callback URL which is: https:/
/agate.example.org/auth/callback/.

Note: For Agate to authenticate for an Application, the redirect URI of the Application must be set (see Applications
Management).

An example of well known open source ID provider that can be declared as an OIDC realm is Keycloak. Keycloak
has also a strong user federation feature, which we recommend to use instead of using the following other realm types
(LDAP etc.).

There following fields are required:

• An ID provider must be identified by a Name,

• The Agate application has been registered in the this provider: these are the Client ID and Client Secret fields.

• The Discovery URI must follow the OpenID Connect configuration discovery specifications.

The optional fields are:

• Title is a human-readable name that will be displayed in the provider’s signin button in the login page. If missing,
the name of the ID provider will be used.

• Groups are the group that are to be automatically applied to any users signing in through this ID provider.

• Account Login address allows the user to go to it’s personal profile page in the ID provider interface (to chenge
its password for instance) from the Opal login page.

35

https://openid.net/connect/
https://www.keycloak.org/
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig

Agate Documentation

• Scope is the scope value(s) to be sent to the ID provider to initiate the OpenID Connect dialog. This is provider
dependent but usually openid is enough.

• User Information Mapping specify which field values of the UserInfo object will be applied to the new Agate
user.

• Groups by Claim is an optional field name in the UserInfo object (that is returned by the ID provider) that contains
the group names to which the user belongs. These will be automatically applied to the user’s profile. Such field
is not one of the standard claims and needs to be explicitly set. The expected value type associated to this claim
is either an array of strings, or a string which group names are separated by spaces (or commas).

• Groups by JS is an optional Javascript code chunk that will process the UserInfo object to extract a group name
or an array of group names to which the Agate user will belong.

• Public URL is the public base URL of the server that will be used when sending notification emails and building
an OpenID Connect callback URL.

Note that the groups mapping (by claim or JS) is executed at each sign in. Then if the user was associated to a new
group in the OIDC provider, this group will be automatically applied to the corresponding Agate’s user as well. If the
group does not exist yet, it will be created (without associated application). Removing an OIDC user from a group
does not remove the Agate user from the group with same name.

10.2.2 LDAP Realm

A realm that authenticates users by using Lightweight Directory Access Protocol to query a Directory Access Agent.
This realm uses a user’s Distinguished Name (DN) template to build queries.

10.2.3 Active Directory Realm

A realm tailored to a Microsoft Active Directory environment. This realm queries by using a combination of a search
filter and search base.

10.2.4 SQL Database Realm

mysql, mariadb and postgresql are supported. This realm queries the user’s password with the salt style used by
the database.

Salt styles include:

• NO_SALT: used when the password is in plain text.

• CRYPT: uses the database’s underlying cryptographic method to decrypt the password.

• COLUMN: the salt column must be the second column included in the query.

• EXTERNAL: uses the specified algorithm to decrypt the password.

36 Chapter 10. Realms Management

https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo

CHAPTER

ELEVEN

ADMINISTRATION

The Administration section is available to users with the role agate-administrator. This menu gives access to
server configuration and status.

11.1 Properties

The following general configuration properties can be modified:

Property Description
Name The name of the organization using this instance of Agate server. It will be used

when sending notification emails.
Public URL Public base URL of the server. It will be used when sending notification emails

and in the OAuth2 settings.
Portal URL The organization main portal, to go back to the main site form the Agate’s public

pages.
Domain The session cookie domain, required for single sign-on to operate.
Short term timeout Ticket expiration timeout in hours.
Long term timeout Ticket expiration timeout in hours when “remember me” option is selected.
Inactive timeout User account expiration timeout in days.
Sign up enabled Whether a user can self register from Agate public pages. This does not prevent

from Mica to expose the sign-up feature.
Sign up form offers to choose
the username

User name will be extracted from user email.

11.2 Encryption Keys

This section presents the tool related to the encryption through HTTPS of transactions between Agate and its clients
by means of a trusted or a self-signed certificate.

Note: In the instruction below, when you are told to cut and paste the content of the certificate, private key or of an
.pem file, make sure that you copy all content, that is including the lines containing -----BEGIN XXXXXXXX-----
and -----END XXXXXXXX-----.

37

Agate Documentation

11.2.1 Create a (self-signed) certificate

Useful when in testing phase, not recommended in production.

1. Click on the Add Keys drop-down.

2. Select Create.

3. Fill in the form and click on Save.

4. Click on the Download Certificate button under the section title Encryption Keys.

Your certificate (.pem file) should automatically be downloaded on your computer.

11.2.2 Import a certificate

It is recommended to use a valid key pair in production.

1. Click on the Add Keys drop-down

2. Select Import. Here you may use (1) certificate and (2) private key that you created using third party software
e.g., OpenSSL. Note that both the certificate and the private key must be in PEM format.

3. Save.

4. Finally, in order for the changes to be taken in account you need to restart Agate server.

11.3 User Attributes

Additional user attributes can be declared. They will appear in the user form (including sign-up).

38 Chapter 11. Administration

https://www.openssl.org/

CHAPTER

TWELVE

PYTHON INTRODUCTION

Agate Python client, a command line scripting tool written in Python, enables automation of tasks in a Agate server.

12.1 Requirements

Python 3.7+ must be installed on the system. See more about Python.

12.2 Installation

The Agate Python Client is available on the official Python Package Index.

sudo pip install obiba-agate

Note: Previous versions were available as system packages. Make sure to remove them before installing the package
with pip.

on Debian systems
sudo apt-get remove agate-python-client

on RPM systems
sudo yum remove agate-python-client

Note: This python package depends on the pycurl package which has some system dependencies. One simple solution
is to install the pycurl system package before.

on Debian systems
sudo apt-get install python3-pycurl

on RPM systems
sudo yum install python3-pycurl

39

https://www.python.org/
https://pypi.org/
https://pypi.org/project/pycurl/

Agate Documentation

12.3 Usage

To get the options of the command line:

agate --help

This command will display which sub-commands are available. Further, given a subcommand obtained from command
above, its help message can be displayed via:

agate <subcommand> --help

This command will display available subcommands.

40 Chapter 12. Python Introduction

CHAPTER

THIRTEEN

USER COMMANDS

User management commands.

13.1 Add User

Add a new user.

agate add-user <CREDENTIALS> [OPTIONS] [EXTRA]

13.1.1 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

41

Agate Documentation

13.1.2 Options

Option Description
--name NAME The user name, required and unique.
--email EMAIL The user email, required and unique.
--upassword UPASSWORD The user password, required if realm is not specified or if it is Agate’s one.
--realm REALM The realm in which the user will authenticate, optional (default is Agate’s

realm).
--first-name FIRST_NAME The user first name.
--last-name LAST_NAME The user last name.
--applications
[APPLICATIONS
[APPLICATIONS ...]]

The applications in which the user can sign-in, space separated.

--groups [GROUPS [GROUPS
...]]

The groups to which the user belongs, space separated.

--role ROLE The role of the user. Default is “agate-user”, which gives only the right to user
to access to its own profile. Other possible value is “agate-administrator”.

--status STATUS Only active users can sign-in. Default value is “ACTIVE”. Other possible values
are: “PENDING”, “APPROVED” or “INACTIVE”.

13.1.3 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

13.1.4 Example

Add a new user.

agate add-user -ag http://localhost:8081 -u administrator -p password --name user1 --
→˓email user1@example.org --upassword CHANGEME --applications mica

Add a new user from a Keycloak’s server that is registered as as an OpenID Connect realm.

agate add-user -ag http://localhost:8081 -u administrator -p password --name user1 --
→˓email user1@example.org --realm keycloak --groups mica-user --groups opal-user

13.2 Delete User

Delete a user.

agate delete-user <CREDENTIALS> [OPTIONS] [EXTRA]

42 Chapter 13. User Commands

Agate Documentation

13.2.1 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

13.2.2 Options

Option Description
--name NAME The user name, mutually exclusive with email.
--email EMAIL The user email, mutually exclusive with name.

13.2.3 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

13.2.4 Example

Delete a user by its name.

agate delete-user -ag http://localhost:8081 -u administrator -p password --name user1

13.2. Delete User 43

Agate Documentation

44 Chapter 13. User Commands

CHAPTER

FOURTEEN

GROUP COMMANDS

Group management commands.

14.1 Add Group

Add a new group.

agate add-group <CREDENTIALS> [OPTIONS] [EXTRA]

14.1.1 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

14.1.2 Options

Option Description
--name NAME The group name, required and unique.
--description DESCRIPTION The description of the group, optional.
--applications [APPLICATIONS
[APPLICATIONS ...]]

The applications in which the users members of the group can
sign-in, space separated.

45

Agate Documentation

14.1.3 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

14.1.4 Example

Add a new group.

agate add-group -ag http://localhost:8081 -u administrator -p password --name␣
→˓researchers --applications mica

14.2 Delete Group

Delete a group.

agate delete-group <CREDENTIALS> [OPTIONS] [EXTRA]

14.2.1 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

14.2.2 Options

Option Description
--name NAME The group name, required.

14.2.3 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

46 Chapter 14. Group Commands

Agate Documentation

14.2.4 Example

Delete a group.

agate delete-group -ag http://localhost:8081 -u administrator -p password --name␣
→˓researchers

14.2. Delete Group 47

Agate Documentation

48 Chapter 14. Group Commands

CHAPTER

FIFTEEN

APPLICATION COMMANDS

Application management commands.

15.1 Add Application

Add a new application.

agate add-application <CREDENTIALS> [OPTIONS] [EXTRA]

15.1.1 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

15.1.2 Options

Option Description
--name NAME The application name, required and unique.
--description DESCRIPTION The description of the application, optional.
--key KEY The application key, required.
--redirect REDIRECT Callback URL to the application’s server, required in the OAuth context.

49

Agate Documentation

15.1.3 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

15.1.4 Example

Add a new application.

agate add-application -ag http://localhost:8081 -u administrator -p password --name␣
→˓someapp --key ABCDEFGH1234

15.2 Delete Application

Delete an application.

agate delete-application <CREDENTIALS> [OPTIONS] [EXTRA]

15.2.1 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

15.2.2 Options

Option Description
--name NAME The application name, required.

15.2.3 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

50 Chapter 15. Application Commands

Agate Documentation

15.2.4 Example

Delete an application.

agate delete-application -ag http://localhost:8081 -u administrator -p password --name␣
→˓someapp

15.2. Delete Application 51

Agate Documentation

52 Chapter 15. Application Commands

CHAPTER

SIXTEEN

OTHER COMMANDS

Other commands for advanced users.

16.1 Web Services

This command is for advanced users wanting to directly access to the REST API of Agate server.

agate rest ws <CREDENTIALS> [OPTIONS] [EXTRA]

16.1.1 Arguments

Argument Description
ws Web service path, for instance: /user/xxx

16.1.2 Credentials

Authentication is done by username/password credentials.

Option Description
--agate AGATE, -ag AGATE Agate server base url.
--user USER, -u USER User name. User with appropriate permissions is expected depending of the

REST resource requested.
--password PASSWORD, -p
PASSWORD

User password.

16.1.3 Options

Option Description
--method METHOD, -m METHOD HTTP method: GET (default), POST, PUT, DELETE, OP-

TIONS.
--accept ACCEPT, -a ACCEPT Accept header (default is application/json).
--content-type CONTENT_TYPE, -ct
CONTENT_TYPE

Content-Type header (default is application/json).

--json, -j Pretty JSON formatting of the response.

53

Agate Documentation

16.1.4 Extras

Option Description
-h, --help Show the command help’s message
--verbose, -v Verbose output

16.1.5 Example

Get all users.

agate rest -ag http://localhost:8081 -u administrator -p password -j /users

54 Chapter 16. Other Commands

CHAPTER

SEVENTEEN

OAUTH2 INTRODUCTION

Agate exposes web services that implements the OAuth2 protocol. OAuth2 is an open authorization protocol which
enables applications to access each others data. The authorization refers to the fact that these data are accessed on
behalf of a resource owner.

For more details, the OAuth2 specifications are available at RFC6749. See also the OpenID Connect specifications
built on top of OAuth2.

17.1 Roles

The OAuth2 protocol defines several roles:

• the resource owner is the person or application that owns the data that is to be shared. In our case a user on Agate
could be a resource owner. The resource they own is their data. The resource owner is depicted in the diagram
as a person, which is probably the most common situation. The resource owner could also be an application.

• the resource server is the server hosting the resources. For instance, Opal or Mica are resource servers.

• the client application is the application requesting access to the resources stored on the resource server. These
resources are owned by the resource owner. A client application could be an X-ray images analyser that extracts
the image data from Opal.

• the authorization server is the server authorizing the client application to access the resources of the resource
owner: this is the role of Agate. The authorization server and the resource server can be the same server, but it
doesn’t have to. When Agate is also the resource server, the resource that is accessed is the user profile.

55

http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html

Agate Documentation

17.2 Client ID, Client Secret and Redirect URI

Before a client application can request access to resources on a resource server, the client application must first register
with the authorization server associated with the resource server. In Agate this is done by adding the client as a new
Application.

The registration is typically a one-time task. Once registered, the registration remains valid, unless the client application
registration is revoked by the Agate’s administrator.

At registration the client application is assigned a client ID and a client secret (password) by the authorization server.
The client ID and secret is unique to the client application on that authorization server. In terms of Agate’s domain, the
client ID is the application’s name and the client secret is the application’s key.

During the registration the client needs to provide a redirect URI. This redirect URI is used when a resource owner
grants authorization to the client application. When a resource owner has successfully authorized the client application
via the authorization server, the resource owner is redirected back to the client application, to the redirect URI.

17.3 Scopes

The scopes are space-separated the application IDs, optionally qualified by a permission. As an example, if an appli-
cation registered in Agate with ID foo declares the read permission (= the permission to access to the resource granted
by foo is read-only), then the authorization scope will be foo:read. If no action is specified, Agate will assume that
foo grants full access to the resource. The permissions are specific to the application and it is the responsibility of the
resource server to handle them as announced.

56 Chapter 17. OAuth2 Introduction

Agate Documentation

17.4 Flows

• Authorization Code Grant Flow: when a client application wants access to the resources of a resource owner,
hosted on a resource server, the client application must first obtain an authorization code grant from the autho-
rization server (Agate).

• Resource Owner Password Credentials Grant Flow: suitable for clients capable of obtaining the resource owner’s
credentials (username and password),

• OpenID Connect Flow: when client wants to get the user information from Agate (authorization and resource
are the same).

17.4. Flows 57

https://tools.ietf.org/html/rfc6749#section-4.1

Agate Documentation

58 Chapter 17. OAuth2 Introduction

CHAPTER

EIGHTEEN

AUTHORIZATION CODE GRANT FLOW

18.1 Summary

When a client application wants access to the resources of a resource owner, hosted on a resource server, the client
application must first obtain an authorization code grant from the authorization server (Agate). The following explains
how such a grant is obtained.

18.2 Step 1. Authorization

18.2.1 Request

The client application must redirect the user to the Agate authorization page which is:

GET https://agate.example.org/ws/oauth2/authorize?<PARAMETERS>

The following values should/could be passed as parameters:

Parameter Description
client_id Client application that will be granted the authorization (required).
response_type The expected value is: code (required).
scope Space separated application names (required).
redirect_uri URL to redirect back to (optional, if not specified default client application redirect URI will be

used).
state Unique string to be passed back upon completion (optional, recommended).

Agate will redirect the “user-agent” (usually a web browser) to a web page where the resource owner can grant or deny
the requested authorizations.

18.2.2 Response

If the resource owner accepts to grant the requested authorizations to the client application, then the response will
consist of a redirect to the provided redirect_uri with the following request parameters:

Parameter Description
code The authorization code.
state The state parameter value that was provided in the request (if any).
expires_in Information about the expiration time (in seconds) before the authorization expires.

59

https://tools.ietf.org/html/rfc6749#section-4.1

Agate Documentation

The redirect request will then look like:

GET https://client.example.org/redirect?code=AUTHORIZATION_CODE&state=STATE&expires_
→˓in=7775999

From then, it is the responsibility of the client application to response to this request with a redirect to the relevant
client application page.

18.2.3 Errors

The following response errors can be encountered during this step.

GET https://client.example.org/redirect?error=ERROR_CODE&error_description=ERROR_MESSAGE

Parameter Description
access_denied When the user refuses to grant the requested authorization.
invalid_scope The requested scope is not one of the declared resource application scopes.
missing_application_redirect_uriThe client application does not have a default redirect URI. This is a client ap-

plication definition issue.
invalid_redirect_uri The provided redirect URI does not starts with the client application’s default

redirect URI.
server_error Other errors.

18.3 Step 2. Access Token Issuing

18.3.1 Request

The REST endpoint to be used is:

POST https://agate.example.org/ws/oauth2/token

The form parameters to be sent within the body of the request are:

Parameter Description
client_id Client application name (required).
client_secret Client application secret key (required).
grant_type The expected value is: authorization_code (required).
code The authorization code from the Step 1 (required).
redirect_uri Must match the originally submitted URI (if one was sent).

60 Chapter 18. Authorization Code Grant Flow

Agate Documentation

18.3.2 Response

The response is a JSON object with the following properties:

Property Description
access_token The access token. Agate provides signed tokens that implement the JSON Web Token specifica-

tion.
token_type What you can do with this token; in the case of Agate the value for this property is bearer.
expires_in Information about the expiration time (in seconds) before the token expires.

An example of response would be:

{
"access_token": "eyJhbGciOiJIUzI1NiJ9.

→˓eyJzdWIiOiJlZGl0b3IiLCJpc3MiOiJhZ2F0ZTo1NmZjMzg0MmNjZjJjMWM3ZWM1YzVkMTQiLCJpYXQiOjE0NTk0NTg0NTgsImV4cCI6MTQ1OTQ4NzI1OCwianRpIjoiNTZmZDkxOWFjY2YyYzFjN2VjNWM1ZDE2IiwiYXVkIjpbIm1pY2EiLCJ0b3RvIl0sImNvbnRleHQiOnsic2NvcGVzIjpbIm1pY2EiXSwidXNlciI6eyJuYW1lIjoiSnVsaWUiLCJncm91cHMiOlsibWljYS1lZGl0b3IiXSwiZmlyc3RfbmFtZSI6Ikp1bGllIn19fQ.
→˓PqlLSZegdPLM2byp0jsgWV-XM3Xed8DP4I03kbUUEeo",
"token_type": "bearer",
"expires_in": 28799

}

Being a JSON Web Token (JWT), the access token can be decoded. There are three parts in a JWT: the header, the
payload and the signature. This could give for example:

{
"alg": "HS256"

}
.
{

"sub": "editor",
"iss": "agate:56fc3842ccf2c1c7ec5c5d14",
"iat": 1459458458,
"exp": 1459487258,
"jti": "56fd919accf2c1c7ec5c5d16",
"aud": [

"mica",
"client_app"

],
"context": {

"scopes": [
"mica"

],
"user": {

"name": "Julie LaTendresse",
"groups": [

"mica-editor"
],
"first_name": "Julie",
"last_name": "Latendresse"

}
}

}
.
[signature]

18.3. Step 2. Access Token Issuing 61

Agate Documentation

The JWT payload contains some basic details on the subject (in addition to the standard claims). These are available
in the context object (which is a claim specific to Agate). The properties of the context are:

Property Description
user.name The user full name for display.
user.first_name The user first name (if any).
user.last_name The user last name (if any).
user.groups The user groups.
scopes Reminder of the scopes associated to the authorization code grant.

Note that this step can be repeated as many times as necessary, using the same authorization code that was granted at
step 1.

18.3.3 Errors

When an error is encountered during this step, the JSON object returned contains the description of the error, for
example:

{
"error_description":"Authorization with code '3b1d664fb09407972d4c212081789c6f' does␣

→˓not exist",
"error":"NoSuchAuthorizationException"

}

18.4 Step 3. Resource Access

The client application will use the access token as a bearer of resource owner identity to get the resource from the
resource server. How the access token should be passed to the resource application is out of the concern of Agate.

Most common practice (this is the case for Opal and Mica) is that the access token is placed in the headers of the HTTP
request issued by the client application on the resource server. This can be expressed as a curl command:

curl -X GET --header "Authorization: Bearer ACCESS_TOKEN" http://resource.example.org/
→˓some/path

18.5 Step 4. Access Token Validation

The resource server has received an access token from a client application. Although the access token delivered by
Agate is a JWT that contains in its payload all the basic information (subject identification, authorized scopes), it is the
responsibility of the resource application to validate this token.

This can be achieved by requesting the REST end point:

GET https://agate.example.org/ws/ticket/ACCESS_TOKEN/_validate

Note that the resource application must identifies itself in this request. This can be expressed as a curl command:

curl -X GET --header "X-App-Auth: Basic `echo -n "APPLICATION_NAME:APPLICATION_KEY" |␣
→˓base64`" https://agate.example.org/ws/ticket/ACCESS_TOKEN/_validate

62 Chapter 18. Authorization Code Grant Flow

https://curl.haxx.se/

Agate Documentation

The expected response code is 200 (OK), without a response body.

Possible validation errors are:

• application could not be identified,

• access token signature verification has failed,

• access token issuer is not the current Agate instance,

• application is not part of the audience of the access token,

• access token has expired,

• user is not active any more.

18.5. Step 4. Access Token Validation 63

Agate Documentation

64 Chapter 18. Authorization Code Grant Flow

CHAPTER

NINETEEN

RESOURCE OWNER PASSWORD CREDENTIALS GRANT FLOW

19.1 Summary

The resource owner password credentials grant is suitable for clients capable of obtaining the resource owner’s cre-
dentials (username and password, typically using an interactive form). This implies that the resource owner has a trust
relationship with the client application, such as the device operating system or a highly privileged application.

Agate’s implementation of this flow is very limited. The access token obtained with this flow does not provide autho-
rization to access the resource applications. This flow’s main use case is to authenticate the resource owner.

19.2 Access Token Issuing

19.2.1 Request

The REST end point to be used is:

POST https://agate.example.org/ws/oauth2/token

The form parameters to be sent within the body of the request are:

Parameter Description
client_id Client application name (required).
client_secret Client application secret key (required).
grant_type The expected value is: password (required).
username The user name.
password The user password.

19.2.2 Response

The response is a JSON object with the following properties:

Property Description
access_token The access token. Agate provides signed tokens that implement the JSON Web Token specifica-

tion.
token_type What you can do with this token; in the case of Agate the value for this property is bearer.
expires_in Information about the expiration time (in seconds) before the token expires.

An example of response would be:

65

https://tools.ietf.org/html/rfc6749#section-4.3

Agate Documentation

{
"access_token": "eyJhbGciOiJIUzI1NiJ9.

→˓eyJzdWIiOiJlZGl0b3IiLCJpc3MiOiJhZ2F0ZTo1NmZjMzg0MmNjZjJjMWM3ZWM1YzVkMTQiLCJpYXQiOjE0NTk0NTg0NTgsImV4cCI6MTQ1OTQ4NzI1OCwianRpIjoiNTZmZDkxOWFjY2YyYzFjN2VjNWM1ZDE2IiwiYXVkIjpbIm1pY2EiLCJ0b3RvIl0sImNvbnRleHQiOnsic2NvcGVzIjpbIm1pY2EiXSwidXNlciI6eyJuYW1lIjoiSnVsaWUiLCJncm91cHMiOlsibWljYS1lZGl0b3IiXSwiZmlyc3RfbmFtZSI6Ikp1bGllIn19fQ.
→˓PqlLSZegdPLM2byp0jsgWV-XM3Xed8DP4I03kbUUEeo",
"token_type": "bearer",
"expires_in": 28799

}

Being a JSON Web Token (JWT), the access token can be decoded. There are three parts in a JWT: the header, the
payload and the signature. This could give for example:

{
"alg": "HS256"

}
.
{

"sub": "editor",
"iss": "agate:56fc3842ccf2c1c7ec5c5d14",
"iat": 1459458458,
"exp": 1459487258,
"jti": "56fd919accf2c1c7ec5c5d16",
"aud": [

"client_app"
],
"context": {

"user": {
"name": "Julie LaTendresse",
"groups": [

"mica-editor"
],
"first_name": "Julie",
"last_name": "Latendresse"

}
}

}
.
[signature]

The JWT payload contains some basic details on the subject (in addition to the standard claims). These are available
in the context object (which is a claim specific to Agate). The properties of the context are:

Property Description
user.name The user full name for display.
user.first_name The user first name (if any).
user.last_name The user last name (if any).
user.groups The user groups.

Note that this step can be repeated as many times as necessary, using the same authorization code that was granted at
step 1.

66 Chapter 19. Resource Owner Password Credentials Grant Flow

https://jwt.io/
https://tools.ietf.org/html/rfc7519#section-4.1

Agate Documentation

19.2.3 Errors

When an error is encountered during this step, the JSON object returned contains the description of the error, for
example:

{
"error_description":"Authorization with code '3b1d664fb09407972d4c212081789c6f' does␣

→˓not exist",
"error":"NoSuchAuthorizationException"

}

19.2. Access Token Issuing 67

Agate Documentation

68 Chapter 19. Resource Owner Password Credentials Grant Flow

CHAPTER

TWENTY

OPENID CONNECT FLOW

20.1 Summary

OpenID connect is an extension on top of OAuth2, so the authorization and token endpoints are the same as described
in OAuth2 Introduction. Currently the OpenID Connect implementation in Agate only supports the authorization code
flow.

Agate implements the OpenID Connect configuration discovery specification (scopes, endpoints, algos etc.). The dis-
covery request would look like:

GET https://agate.example.org/.well-known/openid-configuration

20.2 Step 1. Authorization

This first step is the same as in the one in the Authorization Code Grant Flow: see authorization request and response.
The scope to be requested must contain at least openid in addition to more specific scopes. Currently the only supported
scopes are: email and profile.

Scope Description
openid User name (required).
email User email address and whether this email was verified (optional).
profile User first and last names, groups (optional).
phone User phone (not supported).
address User address (not supported).

An example of an OpenID connect authorization request will then look like:

GET https://agate.example.org/ws/oauth2/authorize?client_id=xxx&response_type=code&
→˓scope=openid+email+profile

69

http://openid.net/specs/openid-connect-core-1_0.html

Agate Documentation

20.3 Step 2. ID Token Issuing

This second step is similar to the access token issuing. When the authorization includes the openid scope, the response
will contain an additional id_token in JWT format. An example of the reponse is:

{
"access_token": "eyJhbGciOiJIUzI1NiJ9.

→˓eyJzdWIiOiJ1c2VyMSIsImlzcyI6ImFnYXRlOjU3MDUyMjA2ZTRiMGRlNDNlYzE5NzM2YiIsImlhdCI6MTQ2MDA0MTU4NCwiZXhwIjoxNDYwMDcwMzg0LCJqdGkiOiI1NzA2Nzc3MGU0YjBmZjM3ODJkYmQ2MjIiLCJhdWQiOlsiZHJ1cGFsIl0sImNvbnRleHQiOnsic2NvcGVzIjpbIm9wZW5pZCJdLCJ1c2VyIjp7Im5hbWUiOiJKb2hubnkgQi4gR29vZCIsImxhc3RfbmFtZSI6Ikdvb2QiLCJncm91cHMiOlsibWljYS11c2VyIl0sImZpcnN0X25hbWUiOiJKb2hubnkgQi4ifX19.
→˓7SblBktnvXaoBFL61Rx_jb6PXXYPr4TFMlyi4ZYP5xE",
"id_token": "eyJhbGciOiJIUzI1NiJ9.

→˓eyJzdWIiOiJ1c2VyMSIsImlzcyI6ImFnYXRlOjU3MDUyMjA2ZTRiMGRlNDNlYzE5NzM2YiIsImdpdmVuX25hbWUiOiJKb2hubnkgQi4iLCJmYW1pbHlfbmFtZSI6Ikdvb2QiLCJuYW1lIjoiSm9obm55IEIuIEdvb2QiLCJlbWFpbCI6ImpvaG55Lmdvb2RAZXhhbXBsZS5jb20iLCJlbWFpbF92ZXJpZmllZCI6ZmFsc2UsImlhdCI6MTQ1OTk3Mzc1OCwiZXhwIjoxNDY3NzQ5NzU4LCJhdWQiOiJkcnVwYWwifQ.
→˓1IqjodUNGZ8pKnlxmjzR0XcDgs8Hnl-ufeFsSNH3qaA",
"expires_in": 28799,
"token_type": "bearer"

}

The id_token represents the following structure (when using scope=openid email profile):

{
"alg": "HS256"

}
.
{

"sub": "user1",
"iss": "agate:57052206e4b0de43ec19736b",
"given_name": "Johnny B.",
"family_name": "Good",
"name": "Johnny B. Good",
"email": "johny.good@example.com",
"email_verified": false,
"iat": 1459973758,
"exp": 1467749758,
"aud": "someapp"

}
.
[signature]

20.4 Step 3. ID Resource Access

In addition to the id_token included in the access token response, the user information can be retrieved from the UserInfo
end point. This step is similar to the resource access one (the resource is then the user information).

An example of ID resource request is:

curl -X GET --header "Authorization: Bearer ACCESS_TOKEN" https://agate.example.org/ws/
→˓oauth2/userinfo

The response is in JSON format and contains the user profile claims. An example of a response is:

{
"family_name": "Good",
"sub": "user1",

(continues on next page)

70 Chapter 20. OpenID Connect Flow

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

Agate Documentation

(continued from previous page)

"iss": "agate:57052206e4b0de43ec19736b",
"email_verified": false,
"given_name": "Johnny B.",
"email": "johny.good@example.com",
"name": "Johnny B. Good"

}

20.4. Step 3. ID Resource Access 71

Agate Documentation

72 Chapter 20. OpenID Connect Flow

CHAPTER

TWENTYONE

PARTNERS AND FUNDERS

The development of this application was made possible thanks to the support of our partners and funders:

73

https://www.maelstrom-research.org/
https://www.epigeny.io/
https://www.canarie.ca/
https://www.eucanconnect.eu/

Agate Documentation

74 Chapter 21. Partners and Funders

CHAPTER

TWENTYTWO

SUPPORT

Please visit OBiBa support page.

75

https://www.obiba.org/pages/support/

	Introduction
	Users, Groups and Applications
	User
	Group
	Application

	Authentication Flow
	Architecture, Servers and Clients
	Agate Server
	Mica Server
	Opal Server

	Installation
	Requirements
	Server Hardware Requirements
	Server Software Requirements

	Install
	Debian Package Installation
	RPM Package Installation
	Zip Distribution Installation
	Docker Image Installation

	Upgrade
	Debian Package Upgrade
	RPM Package Upgrade
	Zip Distribution Upgrade

	Execution
	Server launch
	Usage
	Troubleshooting

	Configuration
	HTTP Server Configuration
	MongoDB Server Configuration
	reCAPTCHA Configuration
	Cross Site Resource Forgery (CSRF)
	User Directories
	Notification Emails
	Reverse Proxy Configuration

	Public Pages Configuration
	Page Templates
	Main Pages
	Adding Pages

	Theme and Style
	Theme
	Style

	Translations

	Web Introduction
	Requirements

	Users Management
	Permissions
	Operations
	Add a user
	Edit a user
	Delete a user
	Reset a user’s password
	Approve/Reject a user request

	Groups Management
	Permissions
	Operations
	Add group
	Edit group
	Delete group

	Applications Management
	Permissions
	Operations
	Add an application
	Edit an application
	Delete an application

	Tickets Management
	Permissions
	Operations
	Delete ticket

	Realms Management
	Authentication Delegation
	Realm Types
	Open ID Connect Realm
	LDAP Realm
	Active Directory Realm
	SQL Database Realm

	Administration
	Properties
	Encryption Keys
	Create a (self-signed) certificate
	Import a certificate

	User Attributes

	Python Introduction
	Requirements
	Installation
	Usage

	User Commands
	Add User
	Credentials
	Options
	Extras
	Example

	Delete User
	Credentials
	Options
	Extras
	Example

	Group Commands
	Add Group
	Credentials
	Options
	Extras
	Example

	Delete Group
	Credentials
	Options
	Extras
	Example

	Application Commands
	Add Application
	Credentials
	Options
	Extras
	Example

	Delete Application
	Credentials
	Options
	Extras
	Example

	Other Commands
	Web Services
	Arguments
	Credentials
	Options
	Extras
	Example

	OAuth2 Introduction
	Roles
	Client ID, Client Secret and Redirect URI
	Scopes
	Flows

	Authorization Code Grant Flow
	Summary
	Step 1. Authorization
	Request
	Response
	Errors

	Step 2. Access Token Issuing
	Request
	Response
	Errors

	Step 3. Resource Access
	Step 4. Access Token Validation

	Resource Owner Password Credentials Grant Flow
	Summary
	Access Token Issuing
	Request
	Response
	Errors

	OpenID Connect Flow
	Summary
	Step 1. Authorization
	Step 2. ID Token Issuing
	Step 3. ID Resource Access

	Partners and Funders
	Support

